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Ribbon graphs (= combinatorial maps)

A ribbon graph is a graph (loops and multiple edges allowed) with a circular
ordering of (half-)edges incident to every vertex.

Equivalently, cellular embedding of a graph into a surface.

Euler’s formula: |V (G)| − |E(G)|+ |F (G)| = 2− 2g.
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Metric ribbon graphs and counting functions

A metric on a ribbon graph G is a function E(G) → R>0.

For a ribbon graph G with n labeled faces and L1, . . . , Ln ∈ Z, let

NG(L1, . . . , Ln) = #

{
integer metrics on G with perimeter of

the i-th face equal to Li

}
For a face-bicolored ribbon graph G with k black and l white faces, and
L1, . . . , Lk, L

′
1, . . . , L

′
l ∈ Z, define analogously

NG(L1, . . . , Lk;L
′
1, . . . , L

′
l).
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Computing a counting function

11′ 2′

2

NG is zero outside of
{∑

i Li =
∑

j L
′
j , Li > 0, L′

j > 0
}
.

a, b, c, d > 0

a = L1

b+ c+ d = L2

a+ b = L′
1

c+ d = L′
2

⇐⇒


a, b, c, d > 0

a = L1

b = L′
1 − L1

c+ d = L′
2

⇒ NG(L;L
′) = 1L′

1>L1
· (L′

2 − 1).
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Counting functions

Proposition

For any G the function NG is piecewise (quasi-)polynomial. The regions of
polynomiality are cut out by a certain hyperplane arrangement Hn (Hk,l).

Idea of proof: counting integer points in a deforming polytope.

Note that the top-degree term of NG gives the volume of this polytope!
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Counting functions

Introduce the counting functions for families RGd
g,n of ribbon graphs sharing the

same genus g, number of faces n and vertex-degree profile d:

N d
g,n(L) =

∑
G∈RGd

g,n

1

|Aut(G)|
· NG(L).

Define N d
g,(k,l)(L,L

′) analogously.

A priori piecewise (quasi-)polynomials...
But sometimes the top-degree term is polynomial!
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Example 1: trivalent graphs

Consider the families of trivalent ribbon graphs: d = [3, . . . , 3] = [34g+2n−4].

Theorem (Kontsevich, ’92)

For any g, n, the top-degree term of N [34g+2n−4]
g,n is a polynomial whose coefficients

are the intersection numbers of ψ-classes on the moduli space of marked Riemann
surfaces:

∫
Mg,n

ψα1
1 · · ·ψαn

n .

Idea: polytopes corresponding to all graphs G can be glued together to form a
space homeomorphic to Mg,n.
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Example 2: one-vertex face-bicolored graphs

Consider one-vertex face-bicolored graphs: d = [2 · (k + l − 1 + 2g)].

Theorem (Y. ’23)

For any g, k, l, the top-degree term of N [2(k+l−1+2g)]
g,(k,l) is a polynomial outside of

the hyperplanes, whose coefficients count certain metric plane trees. Analogous
statement is true on any intersection of hyperplanes.

Idea: compute explicitly using a bijective approach!
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Example 2: one-vertex face-bicolored graphs

g = 0: elementary count of metric plane trees;

g > 0: reduce to case g = 0 using the bijection of Chapuy-Féray-Fusy ’13
between 1-face maps and decorated plane trees, via vertex explosions.
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NEW: many-vertex face-bicolored graphs
If there are ≥ 2 vertices, even the top-degree term are not polynomial...

Solution: weight the contribution of each graph!

Orient each edge of G so that the black face is to the left;

let t(G) be the number of oriented spanning trees of G rooted at an arbitrary
vertex (independent of the vertex!);

Ñ d
g,(k,l)(L,L

′) =
∑

G∈RGd
g,(k,l)

t(G)

|Aut(G)|
· NG(L,L

′).
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NEW: many-vertex face-bicolored graphs

Theorem (Y. ’24)

For g = 0, the top-degree term of Ñ d
0,(k,l) is a polynomial

(k + l − 2)! · (L1 + . . .+ Lk)
ℓ(d)−1.

Idea: use the bijection of Bernardi ’07 between tree-rooted plane maps and pairs
of plane trees + more tricks with trees.
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Discussion

Weighted version is also true for g > 0, but hard to prove bijectively.

From Kontsevich’s proof one can also get a weighted version for trivalent
graphs; weight = number of Kasteleyn orientations with fixed “indegrees”.

Formula (k + l − 2)! · (L1 + . . .+ Lk)
ℓ(d)−1 suggests a double counting

argument: each tree contributes (L1 + . . .+ Lk)
ℓ(d)−1.

It would be interesting to have such an argument for trivalent graphs
⇒ combinatorics of the numbers

∫
Mg,n

ψα1
1 · · ·ψαn

n .
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