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Ribbon graphs (= combinatorial maps)

A ribbon graph is a graph (loops and multiple edges allowed) with a circular
ordering of (half-)edges incident to every vertex.

Equivalently, cellular embedding of a graph into a surface.

Euler’s formula: |V (G)| − |E(G)|+ |F (G)| = 2− 2g.

Faces = boundary components.
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Metric ribbon graphs

A metric on a ribbon graph G is a function E(G) → R>0.

Perimeter of a boundary component = sum of the lengths of incident edges.

Metric ribbon graph ↔ meromorphic (quadratic) differential with real periods.

zero/pole of order k ≥ −1 ↔ vertex of degree k + 2;

poles of order 2 ↔ infinite cylinders;

residues at order 2 poles ↔ perimeters of boundaries /
cylinders.
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Families of ribbon graphs

RGg,n :=

{
genus g ribbon graphs with

n labeled boundary components

}

; quadratic differentials

RGg,(k,l) :=

{
genus g face-bicolored ribbon graphs with

k black and l white labeled boundary components

}
; Abelian differentials

1

1

2

2

1 1
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Counting functions

For L ∈ Zn, let

Pg,n(L) = #

{
integer metric ribbon graphs of genus g

with n boundaries of perimeters L1, . . . , Ln

}

For L ∈ Zk, L′ ∈ Zl, define analogously Pg,(k,l)(L,L
′).
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Motivations

Why study Pg,n(L) or Pg,(k,l)(L,L
′) ?

natural counting problem on strata of meromorphic differentials;

; enumeration / random geometry of square-tiled surfaces,
via cylinder decomposition:

connection to intersection theory on strata / moduli spaces.
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Old result

Consider the counting functions P3
g,n for trivalent ribbon graphs.

Theorem (Kontsevich, ’92)

Up to lower order terms, P3
g,n is a homogeneous polynomial

1

25g−6+2n

∑
d1+...+dn=3g−3+n

⟨τd1 · · · τdn⟩
n∏

i=1

L2di
i

di!
,

where ⟨τd1 · · · τdn⟩ :=
∫
Mg,n

ψd1
1 · · ·ψdn

n are the intersection numbers of ψ-classes

on the moduli space of marked Riemann surfaces.

Witten’s conjecture, Mcomb
g,n , Strebel differentials.
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Old result

From a combinatorial point of view, it’s a miracle!

Pg,n(L) =
∑

G∈RGg,n

1

|Aut(G)|
· PG(L).

Each PG(L) is a piecewise (quasi-)polynomial:

Counting integer points in a deforming polytope.
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New results
Consider the counting functions P1

g,(k,l) for one-vertex face-bicolored graphs.

Theorem (Y. ’23)

For any g, k, l, the top-degree term of P1
g,(k,l) is a polynomial outside of a finite

number of hyperplanes (“walls”), whose coefficients count certain metric plane
trees. Analogous statement is true on any intersection of walls.

(k + l + 2g − 2)!

22g
·

∑
b1+...+bk+w1+...+wl=g

bi,wi≥0

k∏
i=1

L2bi
i

(2bi + 1)!
·

l∏
j=1

L′
j
2wj

(2wj + 1)!
.

outside of the walls: Okounkov, Pandharipande ’06; genus 0: Gendron, Tahar
’22; Chen, Prado ’23 (intersection theory!).

top-degree term on {Li = L′
i, ∀i} ⇒ cylinder contributions in H(2g − 2).
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New results

≥ 2 vertices ⇒ even the top-degree term is not polynomial. /

However, this can be corrected by weighting the contribution of each graph! ,

Orient each edge with black face on the left;

the weight w(G) is the number of oriented spanning
trees of G rooted at an arbitrary vertex (indep.).

Theorem (Y. ’24)

For g = 0, any k, l ≥ 1 and any vertex degree profile d, the weighted counting
function P̃d

0,(k,l) has a polynomial top-degree term, equal to

(k + l − 2)! · (L1 + . . .+ Lk)
ℓ(d)−1.

Also true for g > 0...
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Ideas of proofs
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One-vertex graphs

Sketch of proof (g = 0):

pass to the dual ribbon graphs; P1
0,(k,l)(L;L

′) counts bipartite metric plane

trees with fixed sums of lengths around each vertex (given by Li, L
′
i);

each tree contributes either 1 or 0;

when traversing a wall, we “loose” and “gain” an equal number of trees.
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One-vertex graphs

Sketch of proof (g > 0):

pass to the dual ⇒ 1-face metric ribbon graphs with fixed sums of lengths
around each vertex;

Chapuy-Féray-Fusy ’13: bijection between 1-face maps and decorated plane
trees, via vertex explosions;

allows to control the metric!
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Many-vertex graphs

Idea of proof: Bernardi ’07: bijection between plane maps with a distinguished
spanning tree and pairs of plane trees, again via vertex explosions.

; need to control both the metric and the combinatorics of a tree (positions of
certain corners when going around the tree) ; prefix-postfix sequences.
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Some open problems

intersection theory interpretation of combinatorial results?

understand the combinatorics of the Kontsevich’s theorem;

weighted counting functions for g > 0;

applications to enumeration of square-tiled surfaces?
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Computing a counting function

11′ 2′

2

PG is zero outside of
{∑

i Li =
∑

j L
′
j , Li > 0, L′

j > 0
}
.

a, b, c, d > 0

a = L1

b+ c+ d = L2

a+ b = L′
1

c+ d = L′
2

⇐⇒


a, b, c, d > 0

a = L1

b = L′
1 − L1

c+ d = L′
2

⇒ PG(L;L
′) = 1L′

1>L1
· (L′

2 − 1).
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Piecewise polynomiality

Let PSk,l be the polyhedral subdivision of Rk × Rl generated by the hyperplanes
(“walls”) of the form

∑
i∈I Li =

∑
j∈J L

′
j , I ⊂ {1, . . . , k}, J ⊂ {1, . . . , l}.

Proposition

For any G ∈ RGg,(k,l) the function PG is polynomial on every open cell of PSk,l.

Idea of proof: counting integer points in a deforming polytope.
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Flip-orbits of trees
Are there smaller subfamilies with polynomial counting functions?

Simpler question: are there smaller subfamilies of trees closed under flipping?

Proposition

/ If k ̸= l (mod 2), there is one orbit.
, If k = l (mod 2), there are two orbits!

Invariant? → parity? → of a permutation? → prefix / postfix traversal?

⇒ Prefix-postfix traversal!

1

12

2

3

34

4

42214331
●○●●○●○○
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Flipping edges cleverly

For any edge, there is a unique way to flip it so that the prefix-postfix sequence
does not change!

Proposition (Y., ’24)

For any k, l ≥ 1, any permutation of vertex labels π, and any point (L;L′) outside
of the walls, there is exactly 1 tree with prefix-postfix sequence π and contributing
at (L;L′).
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Triangulations of ∆k ×∆l

Observation: any tree contributes for values of (L;L′) in a simplicial cone

cone
(
ei + e′j : •i−◦j is an edge

)
⊂ (Rk

+ × Rl
+) ∩

{∑
Li =

∑
L′
j

}
,

Its intersection with
{∑

Li =
∑
L′
j = 1

}
= ∆k ×∆l is a simplex.

Theorem (Y., ’24)

For any k, l ≥ 1 and any permutation π of the vertex labels, the simplices
corresponding to plane trees with prefix-postfix sequence π form a triangulation of
∆k ×∆l.
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Example of a triangulation

Example for k = l = 3:

1

2

3 3

1

2 1

2

3 3

1

2

1
2

3 3

1

2

1
2

3

3

1

2

1

2

3
3

1

2
1

2

3

3
1

2
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Computing degeneration coefficients on the walls

1

2

3

4

5

1

1

2

3
4

5

(k + l − 2)! = pb1,...,bnw1,...,wn
+

n∑
t=2

(k + l − 2)t−2

t!

∑
I1,...It

t∏
j=1

∑
i∈Ij

(bi + wi)− 1

 p
bIj
wIj

,
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Degenerations in the quadratic case

G0

G5
G4

G1 G2
G3

a1

b1a2

b2

a3b3

a4
b4

a5 b5

A joining is admissible if and only if for every i = 1, . . . ,m the following holds:

if all of the descendants of Gi have labels smaller then i, then the bridge joining Gi to its parent is in the black corner of Gi;

otherwise, the bridge joining Gi to its parent and the bridge joining Gi to the subtree containing the descendant of Gi of maximal
label are in the corners of Gi of different colors.
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Cylinder contributions in H(2g − 2)

Theorem (Y., 2023)

The contribution of n-cylinder square-tiled surfaces to the volume of H(2g − 2) is

equal to 2(2π)2g

(2g−1)!ag,n, where ag,n ∈ Q, and whose generating function

C(t, u) = 1 +
∑

g≥1 (
∑g

n=1 ag,nu
n) (2g − 1)t2g satisfies for all g ≥ 0

1

(2g)!
[t2g]C(t, u)2g = [t2g]

(
t/2

sin(t/2)

)u

.

Lagrange inversion ⇒ explicit formula for C(t, u);
setting u = 1 we recover the result of Sauvaget.

Faber-Pandharipande 2000:
(

t/2
sin(t/2)

)u+1
is the generating function of

Hodge integrals
∫
Mg,1

λg−iψ
2g−2+i
1
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Cylinder contributions in spin components of H(2g − 2)

Theorem (Y., 2024+)

The difference of the contributions of n-cylinder square-tiled surfaces to the

volumes of even and odd spin subspaces of H(2g − 2) is equal to 2(2πi)2g

(2g−1)! dg,n,
where dg,n ∈ Q, and whose generating function
D(t, u) = 1 +

∑
g≥1 (

∑g
n=1 dg,nu

n) (2g − 1)t2g satisfies for all k ≥ 1

1

2k
[t2k]D(t, u)2k =

B2k

2k+1k
u,

where B2k is the 2k-th Bernoulli number.

u = 1 : formula from Chen, Möller, Sauvaget, Zagier.

Ivan Yakovlev (MPIM Bonn) Metric ribbon graphs Weihnachtsworkshop 10 / 10



Cylinder contributions in spin components of H(2g − 2)

Theorem (Y., 2024+)

The difference of the contributions of n-cylinder square-tiled surfaces to the

volumes of even and odd spin subspaces of H(2g − 2) is equal to 2(2πi)2g

(2g−1)! dg,n,
where dg,n ∈ Q, and whose generating function
D(t, u) = 1 +

∑
g≥1 (

∑g
n=1 dg,nu

n) (2g − 1)t2g satisfies for all k ≥ 1

1

2k
[t2k]D(t, u)2k =

B2k

2k+1k
u,

where B2k is the 2k-th Bernoulli number.

u = 1 : formula from Chen, Möller, Sauvaget, Zagier.

Ivan Yakovlev (MPIM Bonn) Metric ribbon graphs Weihnachtsworkshop 10 / 10


	Ideas of proofs
	Appendix

