Cylinders in square-tiled surfaces of minimal strata

Ivan Yakovlev

LaBRI, Bordeaux

Journée Cartes à Marne-la-Vallée, 10 March 2023

iyakovlev23.github.io

Outline

Main result

- 3 Cylinder decomposition of ST surfaces
- 4 Strategy of proof
- 5 Metric unicellular maps

Outline

Square-tiled (ST) surfaces

2 Main result

Oplimination of ST surfaces

4 Strategy of proof

5 Metric unicellular maps

6 What's next?

Gluing rule: $T \leftrightarrow B$, $L \leftrightarrow R$

Gluing rule: $T \leftrightarrow B$, $L \leftrightarrow R$

Oriented, closed surface

Gluing rule: $T \leftrightarrow B$, $L \leftrightarrow R$

Oriented, closed surface

• Local picture around a vertex:

Gluing rule: $T \leftrightarrow B$, $L \leftrightarrow R$

Oriented, closed surface

• Local picture around a vertex:

Gluing rule: $T \leftrightarrow B$, $L \leftrightarrow R$

Oriented, closed surface

• Local picture around a vertex:

 $\dots \Rightarrow$ all degrees are multiples of 4.

NB: quadrangulation with all degrees multiples of 4 \Rightarrow ST.

NB: quadrangulation with all degrees multiples of 4 \Rightarrow ST. Example:

NB: quadrangulation with all degrees multiples of 4 \Rightarrow ST. Example:

 \Rightarrow being a ST surface is a "global" property.

• fix the degrees of vertices which are bigger then 4 ("singularities"):

 $(4(k_1+1),\ldots,4(k_s+1)), k_i \ge 1$

• fix the degrees of vertices which are bigger then 4 ("singularities"):

$$(4(k_1+1),\ldots,4(k_s+1)), k_i \ge 1$$

• degree 4 vertices are "generic", their number is unconstrained;

• fix the degrees of vertices which are bigger then 4 ("singularities"):

$$(4(k_1+1),\ldots,4(k_s+1)), k_i \ge 1$$

- degree 4 vertices are "generic", their number is unconstrained;
- the genus g is then also fixed $(k_1 + \ldots + k_s = 2g 2)$.

• fix the degrees of vertices which are bigger then 4 ("singularities"):

$$(4(k_1+1),\ldots,4(k_s+1)), k_i \ge 1$$

- degree 4 vertices are "generic", their number is unconstrained;
- the genus g is then also fixed $(k_1 + \ldots + k_s = 2g 2)$.
- let $\mathcal{ST}_{\leq N}(k_1, \ldots, k_s)$ be the set of ST surfaces with these constraints and at most N squares.

• fix the degrees of vertices which are bigger then 4 ("singularities"):

$$(4(k_1+1),\ldots,4(k_s+1)), k_i \ge 1$$

- degree 4 vertices are "generic", their number is unconstrained;
- the genus g is then also fixed $(k_1 + \ldots + k_s = 2g 2)$.
- let $\mathcal{ST}_{\leq N}(k_1, \ldots, k_s)$ be the set of ST surfaces with these constraints and at most N squares.

Claim

As
$$N o \infty$$
, $|\mathcal{ST}_{\leq N}(k_1,\ldots,k_s)| \sim c(k_1,\ldots,k_s) \cdot N^{2g+s-1}$.

• fix the degrees of vertices which are bigger then 4 ("singularities"):

$$(4(k_1+1),\ldots,4(k_s+1)), k_i \ge 1$$

- degree 4 vertices are "generic", their number is unconstrained;
- the genus g is then also fixed $(k_1 + \ldots + k_s = 2g 2)$.
- let $\mathcal{ST}_{\leq N}(k_1, \ldots, k_s)$ be the set of ST surfaces with these constraints and at most N squares.

Claim

As
$$N o \infty$$
, $|\mathcal{ST}_{\leq N}(k_1,\ldots,k_s)| \sim c(k_1,\ldots,k_s) \cdot N^{2g+s-1}$

• We are interested in the numbers $c(k_1, \ldots, k_s)$.

Suppose that the squares are euclidean unit squares.

Suppose that the squares are euclidean unit squares.

A ST surface then becomes a flat surface with conical singularities (of angles $2\pi(k_i + 1)$) and with trivial holonomy/monodromy =: translation surface.

Suppose that the squares are euclidean unit squares.

A ST surface then becomes a *flat surface with conical singularities* (of angles $2\pi(k_i + 1)$) and with trivial holonomy/monodromy =: translation surface.

Any translation surface can be obtained by gluing euclidean polygons *along equal and parallel sides.*

NB: a translation surface can be cut into polygons in many different ways!

• Translation surfaces come in continuous families, called *strata* $\mathcal{H}(k)$, parametrized by the angles of singularities k. Together they form the *moduli space* of translation surfaces. These are manifolds with rich topology, geometry and dynamics.

 $\mathcal{ST}(k) \subset \mathcal{H}(k)$

- Translation surfaces come in continuous families, called *strata* $\mathcal{H}(k)$, parametrized by the angles of singularities k. Together they form the *moduli space* of translation surfaces. These are manifolds with rich topology, geometry and dynamics.
- ST surfaces are "integer points" of strata!

- Translation surfaces come in continuous families, called *strata* $\mathcal{H}(k)$, parametrized by the angles of singularities k. Together they form the *moduli space* of translation surfaces. These are manifolds with rich topology, geometry and dynamics.
- ST surfaces are "integer points" of strata!
- Asymptotic enumeration of $\mathcal{ST}(k) \iff$ computing the volume of the "unit ball" in $\mathcal{H}(k)$ for the (natural) *Masur-Veech measure*.

• Computing the Masur-Veech volumes is one of the (many!) ingredients to answer questions about *(rational) polygonal billiards.*

- Computing the Masur-Veech volumes is one of the (many!) ingredients to answer questions about *(rational) polygonal billiards.*
- Example ("Wind-tree model"): a billiard in the plane with \mathbb{Z}^2 -periodic rectangular obstacles.

- Computing the Masur-Veech volumes is one of the (many!) ingredients to answer questions about *(rational) polygonal billiards.*
- Example ("Wind-tree model"): a billiard in the plane with \mathbb{Z}^2 -periodic rectangular obstacles.

Theorem (Delecroix, Hubert, Lelièvre, 2014)

For almost all parameters of the obstacle, for almost all initial directions, and for any starting point, the trajectory escapes to infinity with rate $t^{2/3}$.

- Computing the Masur-Veech volumes is one of the (many!) ingredients to answer questions about *(rational) polygonal billiards.*
- Example ("Wind-tree model"): a billiard in the plane with \mathbb{Z}^2 -periodic rectangular obstacles.

Theorem (Delecroix, Hubert, Lelièvre, 2014)

For almost all parameters of the obstacle, for almost all initial directions, and for any starting point, the trajectory escapes to infinity with rate $t^{2/3}$.

 $\text{billiard} \stackrel{\text{unfold}}{\longrightarrow} \text{translation surface} \stackrel{\text{renormalization}}{\longleftrightarrow} \text{stratum}$

Outline

Square-tiled (ST) surfaces

2 Main result

- Optimized and the second se
- 4 Strategy of proof
- 5 Metric unicellular maps

6 What's next?

• Zorich 2002 (combinatorial approach) - calculations for small strata;

- Zorich 2002 (combinatorial approach) calculations for small strata;
- Eskin, Okounkov 2001 (representation theory of S_n) algorithm for computing the volumes;

- Zorich 2002 (combinatorial approach) calculations for small strata;
- Eskin, Okounkov 2001 (representation theory of S_n) algorithm for computing the volumes;
- Sauvaget 2018 (intersection theory) generating function for c(2g-2);

- Zorich 2002 (combinatorial approach) calculations for small strata;
- Eskin, Okounkov 2001 (representation theory of S_n) algorithm for computing the volumes;
- Sauvaget 2018 (intersection theory) generating function for c(2g-2);
- Chen, Möller, Sauvaget, Zagier 2020 (intersection theory) recursion for general strata.

Main result

We reconsider the combinatorial approach of Zorich for *minimal strata* $\mathcal{H}(2g-2)$. This leads to the following refinement.

Main result

We reconsider the combinatorial approach of Zorich for *minimal strata* $\mathcal{H}(2g-2)$. This leads to the following refinement.

Theorem (Y., 2022)

Denote by $c_{g,n}$ the (properly normalized) contribution of *n*-cylinder square-tiled surfaces to c(2g-2), and let $C(t,u) = 1 + \sum_{g\geq 1} (\sum_{n=1}^{g} c_{g,n} u^n) (2g-1)t^{2g}$. Then for all $g \geq 0$ $\frac{1}{(2g)!} [t^{2g}]C(t,u)^{2g} = [t^{2g}] \left(\frac{t/2}{\sin(t/2)}\right)^u.$

Main result

We reconsider the combinatorial approach of Zorich for *minimal strata* $\mathcal{H}(2g-2)$. This leads to the following refinement.

Theorem (Y., 2022)

Denote by $c_{g,n}$ the (properly normalized) contribution of *n*-cylinder square-tiled surfaces to c(2g-2), and let $C(t,u) = 1 + \sum_{g \ge 1} (\sum_{n=1}^{g} c_{g,n} u^n) (2g-1)t^{2g}$. Then for all $g \ge 0$ $\frac{1}{(2g)!} [t^{2g}]C(t,u)^{2g} = [t^{2g}] \left(\frac{t/2}{\sin(t/2)}\right)^u$.

• Lagrange inversion \Rightarrow explicit formula for C(t, u) (non-analytic);
Main result

We reconsider the combinatorial approach of Zorich for *minimal strata* $\mathcal{H}(2g-2)$. This leads to the following refinement.

Theorem (Y., 2022)

Denote by $c_{g,n}$ the (properly normalized) contribution of *n*-cylinder square-tiled surfaces to c(2g-2), and let $C(t,u) = 1 + \sum_{g \ge 1} (\sum_{n=1}^{g} c_{g,n} u^n) (2g-1)t^{2g}$. Then for all $g \ge 0$ $\frac{1}{(2g)!} [t^{2g}]C(t,u)^{2g} = [t^{2g}] \left(\frac{t/2}{\sin(t/2)}\right)^u$.

• Lagrange inversion \Rightarrow explicit formula for C(t, u) (non-analytic);

• setting u = 1 we recover the result of Sauvaget.

Outline

Square-tiled (ST) surfaces

2 Main result

3 Cylinder decomposition of ST surfaces

4 Strategy of proof

5 Metric unicellular maps

6 What's next?

* this is not a ST surface as defined...

* this is not a ST surface as defined...

15 / 31

* this is not a ST surface as defined...

* this is not a ST surface as defined...

ST surface = cylinders glued along ribbon graphs.

Outline

Square-tiled (ST) surfaces

2 Main result

Oplimination of ST surfaces

4 Strategy of proof

5 Metric unicellular maps

6 What's next?

Cylinder decomposition in $\mathcal{H}(2g-2)$

Cylinder decomposition in $\mathcal{H}(2g-2)$

• Number the *n* cylinders arbitrarily.

17/31

Cylinder decomposition in $\mathcal{H}(2g-2)$

- Number the *n* cylinders arbitrarily.
- \Rightarrow 1 ribbon graph of genus g n, with 1 vertex, face-bipartite, with n black and n white numbered boundary components

• Let $h_1, \ldots, h_n \in \mathbb{Z}_{>0}$ and $L_1, \ldots, L_n \in \mathbb{Z}_{>0}$ be the heights and the circumferences of the cylinders.

- Let $h_1, \ldots, h_n \in \mathbb{Z}_{>0}$ and $L_1, \ldots, L_n \in \mathbb{Z}_{>0}$ be the heights and the circumferences of the cylinders.
- Then the number of n-cylinder surfaces in $|\mathcal{ST}_{\leq N}(2g-2)$ is

$$\frac{1}{n!} \cdot \sum_{\substack{\sum_{i=1}^{n} h_i L_i \leq N \\ h_i, L_i \in \mathbb{Z}_{>0}}} L_1 \cdots L_n \cdot \mathcal{P}_{n,n}^{g-n}(L_1, \dots, L_n; L_1, \dots, L_n),$$

where $\mathcal{P}_{n,n}^{g-n}(...)$ is the counting function of *integral metric* ribbon graphs of genus g - n, 1 vertex, face-bipartite, n black and n white numbered boundary components of perimeters L_1, \ldots, L_n .

• More generally, let

$$\mathcal{P}^g_{k,l}(L_1,\ldots,L_k;L'_1,\ldots,L'_l)$$

be the counting function for the *integral metric* ribbon graphs of genus g, with 1 vertex, face-bipartite, k black and l white boundary components of perimeters L_1, \ldots, L_k and L'_1, \ldots, L'_l respectively.

More generally, let

$$\mathcal{P}^g_{k,l}(L_1,\ldots,L_k;L'_1,\ldots,L'_l)$$

be the counting function for the *integral metric* ribbon graphs of genus g, with 1 vertex, face-bipartite, k black and l white boundary components of perimeters L_1, \ldots, L_k and L'_1, \ldots, L'_l respectively.

 We are interested in *asymptotics*, so everything boils down to studying the *top-degree term* of P^g_{k,l}.

Outline

1 Square-tiled (ST) surfaces

2 Main result

Oplimination of ST surfaces

4 Strategy of proof

5 Metric unicellular maps

6 What's next?

• Pass to the dual map. Then $\mathcal{P}_{k,l}^g$ counts integral metric unicellular maps, bipartite, with numbered vertices and prescribed sums of edge lengths around each vertex.

۲

• Pass to the dual map. Then $\mathcal{P}^g_{k,l}$ counts integral metric unicellular maps, bipartite, with numbered vertices and prescribed sums of edge lengths around each vertex.

$$\mathcal{P}_{k,l}^g(L;L') = \sum_{G \in \mathcal{E}_{g,k,l}} \frac{1}{|\operatorname{Aut}(G)|} \cdot \mathcal{P}_G(L;L').$$

۲

• Pass to the dual map. Then $\mathcal{P}_{k,l}^g$ counts integral metric unicellular maps, bipartite, with numbered vertices and prescribed sums of edge lengths around each vertex.

$$\mathcal{P}_{k,l}^g(L;L') = \sum_{G \in \mathcal{E}_{g,k,l}} \frac{1}{|\operatorname{Aut}(G)|} \cdot \mathcal{P}_G(L;L').$$

• Every $\mathcal{P}_G(L,L')$ is piecewise polynomial in L,L'. So is, a priori, $\mathcal{P}^g_{k,l}(L;L').$

Consider the positive cone in the subspace $L_1 + \ldots + L_k = L'_1 + \ldots + L'_l$. Inside, there are "walls" given by equations of type $\sum_{i \in I} L_i = \sum_{i \in J} L'_i$.

Consider the positive cone in the subspace $L_1 + \ldots + L_k = L'_1 + \ldots + L'_l$. Inside, there are "walls" given by equations of type $\sum_{i \in I} L_i = \sum_{i \in J} L'_i$.

Theorem (Y., 2022)

On the ambient subspace, or on the intersection of any subset of walls, $top(\mathcal{P}^g_{k,l})$ is a **polynomial** of degree at most 2g. Moreover, its coefficients are the values of $\mathcal{P}^0_{\cdot,\cdot}$ on certain walls, and have a nice combinatorial interpretation.

Lemma

There is at most one metric on a planar tree with given sums L, L' of edge lengths around every vertex. Edge lengths are linear functions of L, L' of the form $\sum_{i \in I} L_i - \sum_{i \in J} L'_i$.

Lemma

There is at most one metric on a planar tree with given sums L, L' of edge lengths around every vertex. Edge lengths are linear functions of L, L' of the form $\sum_{i \in I} L_i - \sum_{i \in J} L'_i$.

Lemma

There is at most one metric on a planar tree with given sums L, L' of edge lengths around every vertex.

Edge lengths are linear functions of L, L' of the form $\sum_{i \in I} L_i - \sum_{j \in J} L'_j$.

Lemma

There is at most one metric on a planar tree with given sums L, L' of edge lengths around every vertex.

Edge lengths are linear functions of L, L' of the form $\sum_{i \in I} L_i - \sum_{j \in J} L'_j$.

Lemma

There is at most one metric on a planar tree with given sums L, L' of edge lengths around every vertex.

Edge lengths are linear functions of L, L' of the form $\sum_{i \in I} L_i - \sum_{j \in J} L'_j$.

Lemma

There is at most one metric on a planar tree with given sums L, L' of edge lengths around every vertex.

Edge lengths are linear functions of L, L' of the form $\sum_{i \in I} L_i - \sum_{i \in J} L'_i$.

Lemma

There is at most one metric on a planar tree with given sums L, L' of edge lengths around every vertex.

Edge lengths are linear functions of L, L' of the form $\sum_{i \in I} L_i - \sum_{j \in J} L'_j$.

Proof:

This is a metric only if all linear forms are positive!

Lemma $\Rightarrow \mathcal{P}^0_{k,l}(L,L')$ is constant outside of the walls.

Lemma $\Rightarrow \mathcal{P}^0_{k,l}(L,L')$ is constant outside of the walls.

Proposition

When the point (L,L') traverses a wall, the value of $\mathcal{P}^0_{k,l}(L,L')$ does not change.

Lemma $\Rightarrow \mathcal{P}^0_{k,l}(L,L')$ is constant outside of the walls.

Proposition

When the point (L,L') traverses a wall, the value of $\mathcal{P}^0_{k,l}(L,L')$ does not change.

• Chapuy 2011: operation on unicellular maps ("slicing of trisections") which produces unicellular maps of lower genus.

• Chapuy 2011: operation on unicellular maps ("slicing of trisections") which produces unicellular maps of lower genus.

Figure from Chapuy's PhD thesis

• Chapuy 2011: operation on unicellular maps ("slicing of trisections") which produces unicellular maps of lower genus.

Figure from the paper by Chapuy, Féray, Fusy

25 / 31

• Chapuy, Fèray, Fusy 2013 : bijection between unicellular maps and plane trees decorated with certain permutation of their vertices.

• Chapuy, Fèray, Fusy 2013 : bijection between unicellular maps and plane trees decorated with certain permutation of their vertices.

• The bijection is non-explicit and 1-to-many...

• Chapuy, Fèray, Fusy 2013 : bijection between unicellular maps and plane trees decorated with certain permutation of their vertices.

- The bijection is non-explicit and 1-to-many...
- But the *underlying graph* of a unicellular map is equal to the underlying graph of the corresponding tree with vertices in each cycle glued together! And that is enough for us!
Ideas:

• Since $\mathcal{P}^g_{k,l}$ counts integer points in some polytopes, $top(\mathcal{P}^g_{k,l})$ computes their *volume*.

Ideas:

- Since $\mathcal{P}^g_{k,l}$ counts integer points in some polytopes, $top(\mathcal{P}^g_{k,l})$ computes their *volume*.
- Suppose we glued a map G from a tree T; there is a bijection between metrics on G and on T.

Ideas:

- Since $\mathcal{P}^g_{k,l}$ counts integer points in some polytopes, $top(\mathcal{P}^g_{k,l})$ computes their *volume*.
- Suppose we glued a map G from a tree T; there is a bijection between metrics on G and on T.
- Suppose that vertex 1 of G is glued from vertices $1, \ldots, m$ of T. Then $L_1 = x_1 + \ldots + x_m$, where L_i, x_i are sums of edge lengths around corresponding vertices.

Ideas:

- Since $\mathcal{P}^g_{k,l}$ counts integer points in some polytopes, $top(\mathcal{P}^g_{k,l})$ computes their *volume*.
- Suppose we glued a map G from a tree T; there is a bijection between metrics on G and on T.
- Suppose that vertex 1 of G is glued from vertices $1, \ldots, m$ of T. Then $L_1 = x_1 + \ldots + x_m$, where L_i, x_i are sums of edge lengths around corresponding vertices.
- Hence

$$\operatorname{top}(\mathcal{P}_G)(L;L') = \int_{\substack{x_1 + \dots + x_m = L_1 \\ \dots \\ \dots}} \mathcal{P}_T(x;x') \ dx \ dx'.$$

27 / 31

Ideas:

- Since $\mathcal{P}^g_{k,l}$ counts integer points in some polytopes, $top(\mathcal{P}^g_{k,l})$ computes their *volume*.
- Suppose we glued a map G from a tree T; there is a bijection between metrics on G and on T.
- Suppose that vertex 1 of G is glued from vertices $1, \ldots, m$ of T. Then $L_1 = x_1 + \ldots + x_m$, where L_i, x_i are sums of edge lengths around corresponding vertices.
- Hence

$$\operatorname{top}(\mathcal{P}_G)(L;L') = \int_{\substack{x_1 + \dots + x_m = L_1 \\ \dots \\ \dots \\ \dots}} \mathcal{P}_T(x;x') \ dx \ dx'.$$

• Summing over all G and T, and using the result for g = 0 on the RHS, we see that $top(\mathcal{P}^g_{k,l})(L;L')$ is a polynomial.

Upshot

Previous proof also shows that the coefficients of $top(\mathcal{P}^g_{k,l})$ are values of genus-0 functions $\mathcal{P}^0_{\cdot,\cdot}$ on different intersections of walls.

Upshot

Previous proof also shows that the coefficients of $top(\mathcal{P}^g_{k,l})$ are values of genus-0 functions $\mathcal{P}^0_{\cdot,\cdot}$ on different intersections of walls. These values can be computed recursively:

Upshot

Previous proof also shows that the coefficients of $top(\mathcal{P}^g_{k,l})$ are values of genus-0 functions $\mathcal{P}^0_{\cdot,\cdot}$ on different intersections of walls. These values can be computed recursively:

Recursion for values of $\mathcal{P}_{k,l}^0 \Rightarrow$ Recursion for the polynomials $\operatorname{top}(\mathcal{P}_{k,l}^g) \Rightarrow$ Recursion for the volume contributions $c_{g,n}$.

Outline

Square-tiled (ST) surfaces

2 Main result

3 Cylinder decomposition of ST surfaces

4 Strategy of proof

5 Metric unicellular maps

Combinatorics:

• general strata (counting functions no longer polynomial...);

Combinatorics:

- general strata (counting functions no longer polynomial...);
- connected components of strata (how to distinguish maps from different components?..).

Combinatorics:

- general strata (counting functions no longer polynomial...);
- connected components of strata (how to distinguish maps from different components?..).

Arithmetic:

• is contribution of every map a multiple zeta value (MZV)?

Combinatorics:

- general strata (counting functions no longer polynomial...);
- connected components of strata (how to distinguish maps from different components?..).

Arithmetic:

• is contribution of every map a multiple zeta value (MZV)?

Algebraic geometry:

 intersection theory interpretation (similar generating series for intersection numbers);

Combinatorics:

- general strata (counting functions no longer polynomial...);
- connected components of strata (how to distinguish maps from different components?..).

Arithmetic:

• is contribution of every map a multiple zeta value (MZV)?

Algebraic geometry:

- intersection theory interpretation (similar generating series for intersection numbers);
- analogy with Kontsevich polynomials.

Theorem (Kontsevich, 1992)

Let $L_1 + \cdots + L_n$ be even. The weighted count of **trivalent** metric ribbon graphs of genus g with n boundaries of perimeters L_1, \ldots, L_n is

 $\mathcal{N}_{g,n}(L_1,\ldots,L_n) = N_{g,n}(L_1,\ldots,L_n) + lower order terms,$

where $N_{g,n}$ is a homogeneous polynomial, whose coefficients are intersection numbers of psi-classes on the moduli space of curves $\mathcal{M}_{g,n}$.

Theorem (Kontsevich, 1992)

Let $L_1 + \cdots + L_n$ be even. The weighted count of **trivalent** metric ribbon graphs of genus g with n boundaries of perimeters L_1, \ldots, L_n is

 $\mathcal{N}_{g,n}(L_1,\ldots,L_n) = N_{g,n}(L_1,\ldots,L_n) + \textit{lower order terms},$

where $N_{g,n}$ is a homogeneous polynomial, whose coefficients are intersection numbers of psi-classes on the moduli space of curves $\mathcal{M}_{g,n}$.

• Delecroix, Goujard, Zograf, Zorich, 2019: (quadratic) square-tiled surfaces of principal strata.

Theorem (Kontsevich, 1992)

Let $L_1 + \cdots + L_n$ be even. The weighted count of **trivalent** metric ribbon graphs of genus g with n boundaries of perimeters L_1, \ldots, L_n is

 $\mathcal{N}_{g,n}(L_1,\ldots,L_n) = N_{g,n}(L_1,\ldots,L_n) + \textit{lower order terms},$

where $N_{g,n}$ is a homogeneous polynomial, whose coefficients are intersection numbers of psi-classes on the moduli space of curves $\mathcal{M}_{g,n}$.

- Delecroix, Goujard, Zograf, Zorich, 2019: (quadratic) square-tiled surfaces of principal strata.
- DGZZ: Uniform asymptotics of intersection numbers (Aggarwal, 2020) + additional work ⇒ large genus asymptotic geometry of random square-tiled surfaces/random multicurves (number of cylinders/primitive components, heights of cylinders/weights of primitive components...).

Theorem (Kontsevich, 1992)

Let $L_1 + \cdots + L_n$ be even. The weighted count of **trivalent** metric ribbon graphs of genus g with n boundaries of perimeters L_1, \ldots, L_n is

 $\mathcal{N}_{g,n}(L_1,\ldots,L_n) = N_{g,n}(L_1,\ldots,L_n) + \textit{lower order terms},$

where $N_{g,n}$ is a homogeneous polynomial, whose coefficients are intersection numbers of psi-classes on the moduli space of curves $\mathcal{M}_{g,n}$.

- Delecroix, Goujard, Zograf, Zorich, 2019: (quadratic) square-tiled surfaces of principal strata.
- DGZZ: Uniform asymptotics of intersection numbers (Aggarwal, 2020) + additional work ⇒ large genus asymptotic geometry of random square-tiled surfaces/random multicurves (number of cylinders/primitive components, heights of cylinders/weights of primitive components...).
- Delecroix, Liu, 2022: Distribution of lengths among components.