Contribution of n-cylinder square-tiled surfaces to Masur-Veech volume of $\mathcal{H}(2 g-2)$

Ivan Yakovlev
Université de Bordeaux
Algebraic geometry and moduli seminar, ETH Zürich November 11, 2022

Outline

(1) Strata of differentials
(2) Masur-Veech volumes
(3) Cylinders and ribbon graphs
(4) Big picture

Outline

(1) Strata of differentials
(2) Masur-Veech volumes
(3) Cylinders and ribbon graphs
(4) Big picture

Strata of differentials

Strata of differentials

- Let $g \geq 2$ and let $\mathcal{H}_{g} \rightarrow \mathcal{M}_{g}$ be the Hodge bundle over the moduli space of genus g curves.

Strata of differentials

- Let $g \geq 2$ and let $\mathcal{H}_{g} \rightarrow \mathcal{M}_{g}$ be the Hodge bundle over the moduli space of genus g curves.
- \mathcal{H}_{g} is stratified according to the orders of zeros of the differentials: for $k=\left(k_{1}, \ldots, k_{s}\right)$ a partition of $2 g-2$, let $\mathcal{H}(k)$ be the corresponding stratum.

Strata of differentials

- Let $g \geq 2$ and let $\mathcal{H}_{g} \rightarrow \mathcal{M}_{g}$ be the Hodge bundle over the moduli space of genus g curves.
- \mathcal{H}_{g} is stratified according to the orders of zeros of the differentials: for $k=\left(k_{1}, \ldots, k_{s}\right)$ a partition of $2 g-2$, let $\mathcal{H}(k)$ be the corresponding stratum.
- Each stratum carries a natural affine structure, given by the local period coordinates: choose a basis $\gamma_{1}, \ldots, \gamma_{2 g+s-1}$ of the relative homology $H_{1}\left(C,\left\{x_{1}, \ldots, x_{s}\right\} ; \mathbb{Z}\right)$, where x_{1}, \ldots, x_{s} are the zeros of ω; then the coordinates of (C, ω) are

$$
\left(\int_{\gamma_{i}} \omega\right)_{i=1, \ldots, 2 g+s-1}
$$

Transition maps are matrices from $G L(2 g+s-1, \mathbb{Z})$.

Flat surfaces

To every $(C, \omega) \in \mathcal{H}_{g}$ corresponds some singular flat surface, as follows:

Flat surfaces

To every $(C, \omega) \in \mathcal{H}_{g}$ corresponds some singular flat surface, as follows:

- around a point $x \in C$ such that $\omega(x) \neq 0$, there is a coordinate z such that $\omega(z)=d z$; it is unique up to translation $z \mapsto z+c$;

Flat surfaces

To every $(C, \omega) \in \mathcal{H}_{g}$ corresponds some singular flat surface, as follows:

- around a point $x \in C$ such that $\omega(x) \neq 0$, there is a coordinate z such that $\omega(z)=d z$; it is unique up to translation $z \mapsto z+c$;
- this gives an atlas of charts on $C \backslash\left\{x_{1}, \ldots, x_{s}\right\}$ with transition maps the translations;

Flat surfaces

To every $(C, \omega) \in \mathcal{H}_{g}$ corresponds some singular flat surface, as follows:

- around a point $x \in C$ such that $\omega(x) \neq 0$, there is a coordinate z such that $\omega(z)=d z$; it is unique up to translation $z \mapsto z+c$;
- this gives an atlas of charts on $C \backslash\left\{x_{1}, \ldots, x_{s}\right\}$ with transition maps the translations;
- in particular, flat metric on $C \backslash\left\{x_{1}, \ldots, x_{s}\right\}$ with trivial holonomy and consistent choice of (say) horizontal direction at every point;

Flat surfaces

To every $(C, \omega) \in \mathcal{H}_{g}$ corresponds some singular flat surface, as follows:

- around a point $x \in C$ such that $\omega(x) \neq 0$, there is a coordinate z such that $\omega(z)=d z$; it is unique up to translation $z \mapsto z+c$;
- this gives an atlas of charts on $C \backslash\left\{x_{1}, \ldots, x_{s}\right\}$ with transition maps the translations;
- in particular, flat metric on $C \backslash\left\{x_{1}, \ldots, x_{s}\right\}$ with trivial holonomy and consistent choice of (say) horizontal direction at every point;
- how does the metric look like around a zero of ω ?

Singularities

Singularities

- Around the zero of order k there is a coordinate z such that $\omega(z)=z^{k} d z ;$

Singularities

- Around the zero of order k there is a coordinate z such that $\omega(z)=z^{k} d z ;$
- it is the pullback of $d z$ by $z \mapsto \frac{1}{k+1} z^{k+1}$;

Singularities

- Around the zero of order k there is a coordinate z such that $\omega(z)=z^{k} d z ;$
- it is the pullback of $d z$ by $z \mapsto \frac{1}{k+1} z^{k+1}$;

Singularities

- Around the zero of order k there is a coordinate z such that $\omega(z)=z^{k} d z$;
- it is the pullback of $d z$ by $z \mapsto \frac{1}{k+1} z^{k+1}$;

- conical singularity of angle $2 \pi(k+1)$;

Singularities

- Around the zero of order k there is a coordinate z such that $\omega(z)=z^{k} d z$;
- it is the pullback of $d z$ by $z \mapsto \frac{1}{k+1} z^{k+1}$;

- conical singularity of angle $2 \pi(k+1)$;
- $k+1$ "horizontal" / "vertical" directions at the singularity.

Polygonal representation

Polygonal representation

- Cut the surface along geodesics joining the singularities;

Polygonal representation

- Cut the surface along geodesics joining the singularities;
- \Rightarrow a collection of polygons in the plane, sides identified by translation;

Polygonal representation

- Cut the surface along geodesics joining the singularities;
- \Rightarrow a collection of polygons in the plane, sides identified by translation;

- complex vectors of sides $=$ periods of ω;

Polygonal representation

- Cut the surface along geodesics joining the singularities;
- \Rightarrow a collection of polygons in the plane, sides identified by translation;

- complex vectors of sides $=$ periods of ω;
- cutting along a diagonal, gluing along identified sides $=$ changing the basis of the relative homology $=$ transition to different period coordinates.

Outline

(1) Strata of differentials

(2) Masur-Veech volumes

(3) Cylinders and ribbon graphs

(4) Big picture

Masur-Veech volumes

Masur-Veech volumes

- Masur-Veech measure ν on $\mathcal{H}(k)=$ Lebesgue measure in period coordinates, normalized in such a way that the unit lattice has covolume 1;

Masur-Veech volumes

- Masur-Veech measure ν on $\mathcal{H}(k)=$ Lebesgue measure in period coordinates, normalized in such a way that the unit lattice has covolume 1;
- total volume $\nu(\mathcal{H}(k))$ is infinite, but there is an induced measure ν_{1} on the locus of area 1 surfaces $\mathcal{H}_{1}(k)$:

$$
\forall U \subset \mathcal{H}_{1}(k): \nu_{1}(U)=\operatorname{dim}_{\mathbb{R}}(\mathcal{H}(k)) \cdot \nu((0,1] \cdot U)
$$

Masur-Veech volumes

- Masur-Veech measure ν on $\mathcal{H}(k)=$ Lebesgue measure in period coordinates, normalized in such a way that the unit lattice has covolume 1;
- total volume $\nu(\mathcal{H}(k))$ is infinite, but there is an induced measure ν_{1} on the locus of area 1 surfaces $\mathcal{H}_{1}(k)$:

$$
\forall U \subset \mathcal{H}_{1}(k): \nu_{1}(U)=\operatorname{dim}_{\mathbb{R}}(\mathcal{H}(k)) \cdot \nu((0,1] \cdot U)
$$

- in the 80 's Masur and Veech independently proved that the total volume $\left.\nu_{1}\left(\mathcal{H}_{1}(k)\right)\right)$ is always finite; we denote it by $\operatorname{Vol}(k)$.

Masur-Veech volumes

- Masur-Veech measure ν on $\mathcal{H}(k)=$ Lebesgue measure in period coordinates, normalized in such a way that the unit lattice has covolume 1;
- total volume $\nu(\mathcal{H}(k))$ is infinite, but there is an induced measure ν_{1} on the locus of area 1 surfaces $\mathcal{H}_{1}(k)$:

$$
\forall U \subset \mathcal{H}_{1}(k): \nu_{1}(U)=\operatorname{dim}_{\mathbb{R}}(\mathcal{H}(k)) \cdot \nu((0,1] \cdot U)
$$

- in the 80 's Masur and Veech independently proved that the total volume $\left.\nu_{1}\left(\mathcal{H}_{1}(k)\right)\right)$ is always finite; we denote it by $\operatorname{Vol}(k)$.
- exact computation of volumes is important to study the dynamics on the strata: Siegel-Veech constants, Lyapunov exponents...

Zorich approach to MV volumes

Zorich approach to MV volumes

- How to compute the volume of the unit ball B_{1}^{n} in \mathbb{R}^{n} ?

Zorich approach to MV volumes

- How to compute the volume of the unit ball B_{1}^{n} in \mathbb{R}^{n} ?
- $\left|r \cdot B_{1}^{n} \cap \mathbb{Z}^{n}\right| \sim \operatorname{Vol}\left(B_{1}^{n}\right) \cdot r^{n}$.

Zorich approach to MV volumes

- How to compute the volume of the unit ball B_{1}^{n} in \mathbb{R}^{n} ?
- $\left|r \cdot B_{1}^{n} \cap \mathbb{Z}^{n}\right| \sim \operatorname{Vol}\left(B_{1}^{n}\right) \cdot r^{n}$.
- Zorich: use the same idea in the stratum of differentials!

Zorich approach to MV volumes

- How to compute the volume of the unit ball B_{1}^{n} in \mathbb{R}^{n} ?
- $\left|r \cdot B_{1}^{n} \cap \mathbb{Z}^{n}\right| \sim \operatorname{Vol}\left(B_{1}^{n}\right) \cdot r^{n}$.
- Zorich: use the same idea in the stratum of differentials!
- $(0,1] \cdot \mathcal{H}_{1}(k)$ - the "unit hyperboloid";

Zorich approach to MV volumes

- How to compute the volume of the unit ball B_{1}^{n} in \mathbb{R}^{n} ?
- $\left|r \cdot B_{1}^{n} \cap \mathbb{Z}^{n}\right| \sim \operatorname{Vol}\left(B_{1}^{n}\right) \cdot r^{n}$.
- Zorich: use the same idea in the stratum of differentials!
- $(0,1] \cdot \mathcal{H}_{1}(k)$ - the "unit hyperboloid";
- $r^{1 / 2} \cdot(0,1] \cdot \mathcal{H}_{1}(k)$ - surfaces of area at most r;

Zorich approach to MV volumes

- How to compute the volume of the unit ball B_{1}^{n} in \mathbb{R}^{n} ?
- $\left|r \cdot B_{1}^{n} \cap \mathbb{Z}^{n}\right| \sim \operatorname{Vol}\left(B_{1}^{n}\right) \cdot r^{n}$.
- Zorich: use the same idea in the stratum of differentials!
- $(0,1] \cdot \mathcal{H}_{1}(k)$ - the "unit hyperboloid";
- $r^{1 / 2} \cdot(0,1] \cdot \mathcal{H}_{1}(k)$ - surfaces of area at most r;
- integer points $=$ differentials with periods in $\mathbb{Z} \oplus i \mathbb{Z}$.

Square-tiled surfaces

Square-tiled surfaces

- Suppose all periods of (C, ω) are in $\mathbb{Z} \oplus i \mathbb{Z}$;

Square-tiled surfaces

- Suppose all periods of (C, ω) are in $\mathbb{Z} \oplus i \mathbb{Z}$;
- the map

$$
\begin{aligned}
& p: C \rightarrow \mathbb{T}:=\mathbb{C} /(\mathbb{Z} \oplus i \mathbb{Z}) \\
& x \mapsto\left(\int_{x_{1}}^{x} \omega\right) \bmod \mathbb{Z} \oplus i \mathbb{Z}
\end{aligned}
$$

is a ramified cover, ramified over x_{1}, \ldots, x_{s}, such that $\omega=p^{*}(d z)$;

Square-tiled surfaces

- Suppose all periods of (C, ω) are in $\mathbb{Z} \oplus i \mathbb{Z}$;
- the map

$$
\begin{aligned}
& p: C \rightarrow \mathbb{T}:=\mathbb{C} /(\mathbb{Z} \oplus i \mathbb{Z}) \\
& x \mapsto\left(\int_{x_{1}}^{x} \omega\right) \bmod \mathbb{Z} \oplus i \mathbb{Z}
\end{aligned}
$$

is a ramified cover, ramified over x_{1}, \ldots, x_{s}, such that $\omega=p^{*}(d z)$;

- this gives a tiling of flat surface (C, ω) by oriented unit squares.

Square-tiled surfaces

- Suppose all periods of (C, ω) are in $\mathbb{Z} \oplus i \mathbb{Z}$;
- the map

$$
\begin{aligned}
& p: C \rightarrow \mathbb{T}:=\mathbb{C} /(\mathbb{Z} \oplus i \mathbb{Z}) \\
& x \mapsto\left(\int_{x_{1}}^{x} \omega\right) \bmod \mathbb{Z} \oplus i \mathbb{Z}
\end{aligned}
$$

is a ramified cover, ramified over x_{1}, \ldots, x_{s}, such that $\omega=p^{*}(d z)$;

- this gives a tiling of flat surface (C, ω) by oriented unit squares.

Square-tiled surfaces

- Suppose all periods of (C, ω) are in $\mathbb{Z} \oplus i \mathbb{Z}$;
- the map

$$
\begin{aligned}
& p: C \rightarrow \mathbb{T}:=\mathbb{C} /(\mathbb{Z} \oplus i \mathbb{Z}) \\
& x \mapsto\left(\int_{x_{1}}^{x} \omega\right) \bmod \mathbb{Z} \oplus i \mathbb{Z}
\end{aligned}
$$

is a ramified cover, ramified over x_{1}, \ldots, x_{s}, such that $\omega=p^{*}(d z)$;

- this gives a tiling of flat surface (C, ω) by oriented unit squares.

Square-tiled surfaces

- Suppose all periods of (C, ω) are in $\mathbb{Z} \oplus i \mathbb{Z}$;
- the map

$$
\begin{aligned}
& p: C \rightarrow \mathbb{T}:=\mathbb{C} /(\mathbb{Z} \oplus i \mathbb{Z}) \\
& x \mapsto\left(\int_{x_{1}}^{x} \omega\right) \bmod \mathbb{Z} \oplus i \mathbb{Z}
\end{aligned}
$$

is a ramified cover, ramified over x_{1}, \ldots, x_{s}, such that $\omega=p^{*}(d z)$;

- this gives a tiling of flat surface (C, ω) by oriented unit squares.

$\mathrm{T} \leftrightarrow \mathrm{B}, \mathrm{L} \leftrightarrow \mathrm{R}$

Upshot

- Strata have natural affine structure;
- MV measure is Lebesgue measure in the affine charts;
- computing MV volumes is equivalent to asymptotic enumeration of square-tiled (ST) surfaces belonging to the stratum:

$$
\operatorname{Vol}(k)=2 d \cdot \lim _{N \rightarrow+\infty} \frac{|\mathcal{S T}(\mathcal{H}(k), N)|}{N^{d}}
$$

Upshot

- Strata have natural affine structure;
- MV measure is Lebesgue measure in the affine charts;
- computing MV volumes is equivalent to asymptotic enumeration of square-tiled (ST) surfaces belonging to the stratum:

$$
\operatorname{Vol}(k)=2 d \cdot \lim _{N \rightarrow+\infty} \frac{|\mathcal{S T}(\mathcal{H}(k), N)|}{N^{d}}
$$

Confession: this is not how people computed MV volumes in general!

Upshot

- Strata have natural affine structure;
- MV measure is Lebesgue measure in the affine charts;
- computing MV volumes is equivalent to asymptotic enumeration of square-tiled (ST) surfaces belonging to the stratum:

$$
\operatorname{Vol}(k)=2 d \cdot \lim _{N \rightarrow+\infty} \frac{|\mathcal{S T}(\mathcal{H}(k), N)|}{N^{d}}
$$

Confession: this is not how people computed MV volumes in general!

- Eskin, Okounkov (representation theory of S_{n}) - algorithm for computing the volumes;

Upshot

- Strata have natural affine structure;
- MV measure is Lebesgue measure in the affine charts;
- computing MV volumes is equivalent to asymptotic enumeration of square-tiled (ST) surfaces belonging to the stratum:

$$
\operatorname{Vol}(k)=2 d \cdot \lim _{N \rightarrow+\infty} \frac{|\mathcal{S T}(\mathcal{H}(k), N)|}{N^{d}}
$$

Confession: this is not how people computed MV volumes in general!

- Eskin, Okounkov (representation theory of S_{n}) - algorithm for computing the volumes;
- Sauvaget (intersection theory) - generating function for $\operatorname{Vol}(2 g-2)$;

Upshot

- Strata have natural affine structure;
- MV measure is Lebesgue measure in the affine charts;
- computing MV volumes is equivalent to asymptotic enumeration of square-tiled (ST) surfaces belonging to the stratum:

$$
\operatorname{Vol}(k)=2 d \cdot \lim _{N \rightarrow+\infty} \frac{|\mathcal{S T}(\mathcal{H}(k), N)|}{N^{d}}
$$

Confession: this is not how people computed MV volumes in general!

- Eskin, Okounkov (representation theory of S_{n}) - algorithm for computing the volumes;
- Sauvaget (intersection theory) - generating function for $\operatorname{Vol}(2 g-2)$;
- Chen, Möller, Sauvaget, Zagier (intersection theory) - recursion for general strata.

Main theorem

Main theorem

Theorem (Sauvaget)

Let $\operatorname{Vol}(2 g-2)=\frac{2(2 \pi)^{2 g}}{(2 g-1)!} a_{g}$, and let $\mathcal{F}(t)=1+\sum_{g \geq 1} a_{g}(2 g-1) t^{2 g}$.
Then for all $g \geq 0$

$$
\frac{1}{(2 g)!}\left[t^{2 g}\right] \mathcal{F}(t)^{2 g}=\left[t^{2 g}\right]\left(\frac{t / 2}{\sin (t / 2)}\right) .
$$

Main theorem

Theorem (Sauvaget)

Let $\operatorname{Vol}(2 g-2)=\frac{2(2 \pi)^{2 g}}{(2 g-1)!} a_{g}$, and let $\mathcal{F}(t)=1+\sum_{g \geq 1} a_{g}(2 g-1) t^{2 g}$.
Then for all $g \geq 0$

$$
\frac{1}{(2 g)!}\left[t^{2 g}\right] \mathcal{F}(t)^{2 g}=\left[t^{2 g}\right]\left(\frac{t / 2}{\sin (t / 2)}\right)
$$

Theorem (Y.)

Let the contribution of n-cylinder square-tiled surfaces to $\operatorname{Vol}(2 g-2)$ be equal to $\frac{2(2 \pi)^{2 g}}{(2 g-1)!} a_{g, n}$, and let $\mathcal{C}(t, u)=1+\sum_{g \geq 1}\left(\sum_{n=1}^{g} a_{g, n} u^{n}\right)(2 g-1) t^{2 g}$. Then for all $g \geq 0$

$$
\frac{1}{(2 g)!}\left[t^{2 g}\right] \mathcal{C}(t, u)^{2 g}=\left[t^{2 g}\right]\left(\frac{t / 2}{\sin (t / 2)}\right)^{u}
$$

Outline

(1) Strata of differentials

(2) Masur-Veech volumes
(3) Cylinders and ribbon graphs

(4) Big picture

Cylinder decomposition, ribbon graphs

* this is not an Abelian differential...

Cylinder decomposition, ribbon graphs

- Square-tiled surface $=$ cylinders glued along ribbon graphs;

Cylinder decomposition, ribbon graphs

- Square-tiled surface $=$ cylinders glued along ribbon graphs;
- ribbon graph $=$ graph with circular ordering of edges around each vertex \Rightarrow tubular neighborhood \Rightarrow genus, boundary components;

Cylinder decomposition, ribbon graphs

- Square-tiled surface $=$ cylinders glued along ribbon graphs;
- ribbon graph $=$ graph with circular ordering of edges around each vertex \Rightarrow tubular neighborhood \Rightarrow genus, boundary components;
- here the vertices are the singularities, the edges are the horizontal geodesics joining the singularities.

Cylinder decomposition, ribbon graphs

- Square-tiled surface $=$ cylinders glued along ribbon graphs;
- ribbon graph $=$ graph with circular ordering of edges around each vertex \Rightarrow tubular neighborhood \Rightarrow genus, boundary components;
- here the vertices are the singularities, the edges are the horizontal geodesics joining the singularities.
- cylinders are glued to the boundary components of ribbon graphs.

Cylinder decomposition in $\mathcal{H}(2 g-2)$

n cylinders $\Rightarrow 1$ ribbon graph of genus $g-n$, with 1 vertex, $2 n$ boundary components of 2 colors, adjacent boundaries have different colors.

Counting square-tiled surfaces

Counting square-tiled surfaces

Let $h_{1}, \ldots, h_{n} \in \mathbb{Z}_{>0}$ and $L_{1}, \ldots, L_{n} \in \mathbb{Z}_{>0}$ be the heights and the circumferences of the cylinders.

Counting square-tiled surfaces

Let $h_{1}, \ldots, h_{n} \in \mathbb{Z}_{>0}$ and $L_{1}, \ldots, L_{n} \in \mathbb{Z}_{>0}$ be the heights and the circumferences of the cylinders.
Then the number $\left|\mathcal{S} \mathcal{T}_{n}(\mathcal{H}(2 g-2), N)\right|$ of n-cylinder square-tiled surfaces in $\mathcal{H}(2 g-2)$ with at most N squares is equal to

$$
\frac{1}{n!} \cdot \sum_{\substack{\sum_{i=1}^{n} h_{i} L_{i} \leq N \\ h_{i}, L_{i} \in \mathbb{Z}>0}} L_{1} \cdots L_{n} \cdot \mathcal{P}_{n, n}^{g-n}\left(L_{1}, \ldots, L_{n} ; L_{1}, \ldots, L_{n}\right),
$$

where $\mathcal{P}_{n, n}^{g-n}(\ldots)$ is the counting function of integral metric ribbon graphs of genus $g-n, 1$ vertex, n black and n white boundary components of perimeters L_{1}, \ldots, L_{n}.

Counting ribbon graphs

More generally, let

$$
\mathcal{P}_{k, I}^{g}\left(L_{1}, \ldots, L_{k} ; L_{1}^{\prime}, \ldots, L_{l}^{\prime}\right)
$$

be the counting function for the integral metric ribbon graphs of genus g, with 1 vertex, k black and I white boundary components of perimeter L_{1}, \ldots, L_{k} and $L_{1}^{\prime}, \ldots, L_{l}^{\prime}$ respectively.

Counting ribbon graphs

- Piecewise polynomial function of L, L^{\prime}, of degree $2 g$;

Counting ribbon graphs

- Piecewise polynomial function of L, L^{\prime}, of degree $2 g$;

Theorem (Y.)

On the generic subspace, or on the intersection of any number of walls, top $\left(\mathcal{P}_{k, l}^{g}\right)$ is a polynomial. Moreover, its coefficients are the values of $\mathcal{P}_{;, \text {, }}^{0}$ on certain walls.

Outline

(1) Strata of differentials

(2) Masur-Veech volumes
(3) Cylinders and ribbon graphs
(4) Big picture

Big picture

"Proof" of Main Theorem:

Big picture

"Proof" of Main Theorem: Functions $\mathcal{P}_{., \text {. }}^{0}$, count simple combinatorial objects (metric plane trees).

Big picture

"Proof" of Main Theorem: Functions $\mathcal{P}_{., \text {. }}^{0}$ count simple combinatorial objects (metric plane trees).

Recursion for values of $\mathcal{P}_{k, l}^{0} \Rightarrow$ Recursion for the polynomials $\operatorname{top}\left(\mathcal{P}_{k, l}^{g}\right)$
\Rightarrow Recursion for the volume contributions $a_{g, n}$.

Big picture

"Proof" of Main Theorem: Functions $\mathcal{P}_{., \text {, }}^{0}$ count simple combinatorial objects (metric plane trees).

Recursion for values of $\mathcal{P}_{k, l}^{0} \Rightarrow$ Recursion for the polynomials $\operatorname{top}\left(\mathcal{P}_{k, l}^{g}\right)$
\Rightarrow Recursion for the volume contributions $a_{g, n}$.

- $\operatorname{top}\left(\mathcal{P}_{k, l}^{g}\right)$ are analogous to Kontsevich polynomials, whose coefficients are intersections of psi classes on $\overline{\mathcal{M}}_{g, n}$;

Big picture

"Proof" of Main Theorem: Functions $\mathcal{P}_{., \text {, }}^{0}$ count simple combinatorial objects (metric plane trees).

Recursion for values of $\mathcal{P}_{k, l}^{0} \Rightarrow$ Recursion for the polynomials $\operatorname{top}\left(\mathcal{P}_{k, l}^{g}\right)$
\Rightarrow Recursion for the volume contributions $a_{g, n}$.

- top $\left(\mathcal{P}_{k, l}^{g}\right)$ are analogous to Kontsevich polynomials, whose coefficients are intersections of psi classes on $\overline{\mathcal{M}}_{g, n}$;
- $\mathcal{P}_{k, l}^{g}\left(L ; L^{\prime}\right)$ are the double Hurwitz numbers with a single cycle $H^{\mathbb{C} P^{1}}\left(L ;(2 g+k+I-1) ; L^{\prime}\right) ;$

Big picture

"Proof" of Main Theorem: Functions $\mathcal{P}_{., \text {, }}^{0}$ count simple combinatorial objects (metric plane trees).

Recursion for values of $\mathcal{P}_{k, l}^{0} \Rightarrow$ Recursion for the polynomials $\operatorname{top}\left(\mathcal{P}_{k, l}^{g}\right)$
\Rightarrow Recursion for the volume contributions $a_{g, n}$.

- top $\left(\mathcal{P}_{k, l}^{g}\right)$ are analogous to Kontsevich polynomials, whose coefficients are intersections of psi classes on $\overline{\mathcal{M}}_{g, n}$;
- $\mathcal{P}_{k, l}^{g}\left(L ; L^{\prime}\right)$ are the double Hurwitz numbers with a single cycle $H^{\mathbb{C} P^{1}}\left(L ;(2 g+k+I-1) ; L^{\prime}\right)$;
- intersection-theoretic interpretation of $a_{g, n}$?

