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Strata of differentials

Let g ≥ 2 and let Hg → Mg be the Hodge bundle over the moduli
space of genus g curves.

Hg is stratified according to the orders of zeros of the differentials:
for k = (k1, . . . , ks) a partition of 2g − 2, let H(k) be the
corresponding stratum.

Each stratum carries a natural affine structure, given by the local
period coordinates: choose a basis γ1, . . . , γ2g+s−1 of the relative
homology H1(C , {x1, . . . , xs};Z), where x1, . . . , xs are the zeros of ω;
then the coordinates of (C , ω) are(∫

γi

ω

)
i=1,...,2g+s−1

Transition maps are matrices from GL(2g + s − 1,Z).
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Ivan Yakovlev (Université de Bordeaux) Cylinders and volume of H(2g − 2) AG seminar, ETH 4 / 22



Strata of differentials

Let g ≥ 2 and let Hg → Mg be the Hodge bundle over the moduli
space of genus g curves.

Hg is stratified according to the orders of zeros of the differentials:
for k = (k1, . . . , ks) a partition of 2g − 2, let H(k) be the
corresponding stratum.

Each stratum carries a natural affine structure, given by the local
period coordinates: choose a basis γ1, . . . , γ2g+s−1 of the relative
homology H1(C , {x1, . . . , xs};Z), where x1, . . . , xs are the zeros of ω;
then the coordinates of (C , ω) are(∫

γi

ω

)
i=1,...,2g+s−1

Transition maps are matrices from GL(2g + s − 1,Z).
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Flat surfaces

To every (C , ω) ∈ Hg corresponds some singular flat surface, as follows:

around a point x ∈ C such that ω(x) ̸= 0, there is a coordinate z
such that ω(z) = dz ; it is unique up to translation z 7→ z + c ;

this gives an atlas of charts on C \ {x1, . . . , xs} with transition maps
the translations;

in particular, flat metric on C \ {x1, . . . , xs} with trivial holonomy and
consistent choice of (say) horizontal direction at every point;

how does the metric look like around a zero of ω?
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Singularities

Around the zero of order k there is a coordinate z such that
ω(z) = zkdz ;

it is the pullback of dz by z 7→ 1
k+1z

k+1;

conical singularity of angle 2π(k + 1);

k + 1 “horizontal” / “vertical” directions at the singularity.
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Polygonal representation

Cut the surface along geodesics joining the singularities;

⇒ a collection of polygons in the plane, sides identified by translation;

complex vectors of sides = periods of ω;

cutting along a diagonal, gluing along identified sides = changing the
basis of the relative homology = transition to different period
coordinates.

= = =
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Masur-Veech volumes

Masur-Veech measure ν on H(k) = Lebesgue measure in period
coordinates, normalized in such a way that the unit lattice has
covolume 1;

total volume ν(H(k)) is infinite, but there is an induced measure ν1
on the locus of area 1 surfaces H1(k):

∀U ⊂ H1(k) : ν1(U) = dimR(H(k)) · ν((0, 1] · U)

in the 80’s Masur and Veech independently proved that the total
volume ν1(H1(k))) is always finite; we denote it by Vol(k).

exact computation of volumes is important to study the dynamics on
the strata: Siegel-Veech constants, Lyapunov exponents...
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Zorich approach to MV volumes

How to compute the volume of the unit ball Bn
1 in Rn?

|r · Bn
1 ∩ Zn| ∼ Vol(Bn

1 ) · rn.
Zorich: use the same idea in the stratum of differentials!

(0, 1] · H1(k) – the “unit hyperboloid”;

r1/2 · (0, 1] · H1(k) – surfaces of area at most r ;

integer points = differentials with periods in Z⊕ iZ.
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Square-tiled surfaces

Suppose all periods of (C , ω) are in Z⊕ iZ;
the map

p : C → T := C/(Z⊕ iZ)

x 7→
(∫ x

x1

ω

)
modZ⊕ iZ

is a ramified cover, ramified over x1, . . . , xs , such that ω = p∗(dz);

this gives a tiling of flat surface (C , ω) by oriented unit squares.

T

B

L R

T ↔ B, L ↔ R

TT
B B

L

LR

R
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Upshot

Strata have natural affine structure;

MV measure is Lebesgue measure in the affine charts;

computing MV volumes is equivalent to asymptotic enumeration of
square-tiled (ST) surfaces belonging to the stratum:

Vol(k) = 2d · lim
N→+∞

|ST (H(k),N)|
Nd

.

Confession: this is not how people computed MV volumes in general!

Eskin, Okounkov (representation theory of Sn) – algorithm for
computing the volumes;

Sauvaget (intersection theory) – generating function for Vol(2g − 2);

Chen, Möller, Sauvaget, Zagier (intersection theory) – recursion for
general strata.
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computing the volumes;

Sauvaget (intersection theory) – generating function for Vol(2g − 2);

Chen, Möller, Sauvaget, Zagier (intersection theory) – recursion for
general strata.
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Main theorem

Theorem (Sauvaget)

Let Vol(2g − 2) = 2(2π)2g

(2g−1)!ag , and let F(t) = 1 +
∑

g≥1 ag (2g − 1)t2g .
Then for all g ≥ 0

1

(2g)!
[t2g ]F(t)2g = [t2g ]

(
t/2

sin(t/2)

)
.

Theorem (Y.)

Let the contribution of n-cylinder square-tiled surfaces to Vol(2g − 2) be

equal to 2(2π)2g

(2g−1)!ag ,n, and let

C(t, u) = 1 +
∑

g≥1

(∑g
n=1 ag ,nu

n
)
(2g − 1)t2g . Then for all g ≥ 0

1

(2g)!
[t2g ]C(t, u)2g = [t2g ]

(
t/2

sin(t/2)

)u

.
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Outline

1 Strata of differentials

2 Masur-Veech volumes

3 Cylinders and ribbon graphs

4 Big picture
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Cylinder decomposition, ribbon graphs

∗ this is not an Abelian differential...
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Cylinder decomposition, ribbon graphs

Square-tiled surface = cylinders glued along ribbon graphs;

ribbon graph = graph with circular ordering of edges around each
vertex ⇒ tubular neighborhood ⇒ genus, boundary components;

here the vertices are the singularities, the edges are the horizontal
geodesics joining the singularities.

cylinders are glued to the boundary components of ribbon graphs.
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Cylinder decomposition in H(2g − 2)

1

1

1

1

2

2

1

1

1 1

1

1

2

2

1 1

1 1 1 12 2

1

1

n cylinders ⇒ 1 ribbon graph of genus g − n, with 1 vertex, 2n boundary
components of 2 colors, adjacent boundaries have different colors.
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Counting square-tiled surfaces

Let h1, . . . , hn ∈ Z>0 and L1, . . . , Ln ∈ Z>0 be the heights and the
circumferences of the cylinders.
Then the number |ST n(H(2g − 2),N)| of n-cylinder square-tiled surfaces
in H(2g − 2) with at most N squares is equal to

1

n!
·

∑
∑n

i=1 hiLi≤N
hi ,Li∈Z>0

L1 · · · Ln · Pg−n
n,n (L1, . . . , Ln; L1, . . . , Ln),

where Pg−n
n,n (...) is the counting function of integral metric ribbon graphs

of genus g − n, 1 vertex, n black and n white boundary components of
perimeters L1, . . . , Ln.
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Counting ribbon graphs

More generally, let
Pg
k,l(L1, . . . , Lk ; L

′
1, . . . , L

′
l)

be the counting function for the integral metric ribbon graphs of genus g ,
with 1 vertex, k black and l white boundary components of perimeter
L1, . . . , Lk and L′1, . . . , L

′
l respectively.
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Counting ribbon graphs

Piecewise polynomial function of L, L′, of degree 2g ;

Theorem (Y.)

On the generic subspace, or on the intersection of any number of walls,
top(Pg

k,l) is a polynomial. Moreover, its coefficients are the values of P0
·,·

on certain walls.
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Outline

1 Strata of differentials

2 Masur-Veech volumes

3 Cylinders and ribbon graphs

4 Big picture
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Big picture

“Proof” of Main Theorem:

Functions P0
·,· count simple combinatorial

objects (metric plane trees).

Recursion for values of P0
k,l ⇒ Recursion for the polynomials top(Pg

k,l)
⇒ Recursion for the volume contributions ag ,n.

top(Pg
k,l) are analogous to Kontsevich polynomials, whose coefficients

are intersections of psi classes on Mg ,n;

Pg
k,l(L; L

′) are the double Hurwitz numbers with a single cycle

HCP1
(L; (2g + k + l − 1); L′);

intersection-theoretic interpretation of ag ,n?
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